

¹ Department of Computational and Applied Mathematics, Rice University

Cahn–Hilliard–Navier–Stokes System

Mathematical Model

- The unknown variables are order parameter c, chemical **potential** μ , **velocity** \boldsymbol{v} , and **pressure** p. $\partial_t c - \nabla \cdot (M(c) \nabla \mu) + \nabla \cdot (c v) = 0 \text{ in } (0, T) \times \Omega,$ $\mu = \beta \Phi'(c) - \alpha \Delta c \text{ in } (0,T) \times \Omega$
- $\rho_0(\partial_t \boldsymbol{v} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v}) \mu_s \Delta \boldsymbol{v} = -\boldsymbol{\nabla} p + \mu \boldsymbol{\nabla} c \quad \text{in } (0,T) \times \boldsymbol{\Omega} ,$ $\nabla \cdot \boldsymbol{v} = 0 \text{ in } (0, T) \times \Omega$
- For flow through porous media scenarios, the model is supplemented with physically and mathematically **consistent boundary conditions** at the inlet and outlet.
- Total energy F equals kinetic energy plus Helmholtz free energy:

$$F(c, \boldsymbol{v}) = \int_{\Omega} \frac{\rho_0}{2} |\boldsymbol{v}|^2 + \int_{\Omega} \left(\beta \Phi(c) + \frac{\alpha}{2} |\boldsymbol{\nabla} c|^2\right),$$

where $\Phi(c)$ denotes the **chemical energy density**.

- Popular expressions of Φ include Ginzburg–Landau potential and Flory–Huggins potential.
- A closed Cahn–Hilliard–Navier–Stokes system enjoys the properties of mass conservation and energy dissipation.

Numerical Method

- Hierarchical bases with orthogonal basis functions enable arbitrary order of approximation.
- Interior penalty DG methods for space discretization.
- Implicit-explicit scheme for time discretization.
- Pressure-correction projection in conjunction with divdiv correction technique ensures a pointwise solenoidal velocity field.
- Momentum balance equation: linearized by **Picard splitting**. Nonlinear solution is obtained by fixed-point iteration.
- Mass balance equation: linearized by **Newton's method**. Dissipates discrete free energy by utilizing a convexconcave decomposition. Scheme reduces to cell-centered finite volumes with the use of element-wise constants basis [1]
- [1] F. Frank, C. Liu, F. O. Alpak, S. Berg, and B. Rivière. "Direct numerical simulation of flow on pore-scale images using the phase-field method". In: SPE Journal (2018). SPE-182607-PA. Accepted.
- [2] F. Frank, C. Liu, A. Scanziani, F. O. Alpak, and B. Rivière. "An energy-based contact angle boundary condition on jagged surfaces for the Cahn–Hilliard equation". In: Journal of Colloid and Interface Science (2018). Accepted.

ONE-COMPONENT SINGLE-PHASE FLOW SIMULATOR AND TWO-COMPONENT BINARY FLOW SIMULATOR WITH APPLICATIONS IN POROUS MEDIA Chen Liu¹, Florian Frank¹, Faruk O. Alpak², Béatrice Rivière¹

Pore-scale Numerical Simulations

Ketton-brine-decane System

The simulation of equilibrium state wetting phenomena is validated by comparing numerical results against segmented micro-CT data from an experimental setup: The pore space (left) contains 62.6% brine and 37.4%decane, the latter of which forms a ganglion (2nd from left) with a contact angle of 37.5° at steady state. The simulation data (right) matches the segmented image data from the physical experiment (2nd from right) [2].

Snap-off Phenomenon

Three dimensional views of the evolution of the **order parameter** c (interface center is shown in gray and phase) B is blue). Capillary forces cause droplets to snap off through the geometric constriction of the pore space.

Two-phase Flow through Porous Domains

Micro-CT scan creates **porous images** at micrometer scale in which **voxel sets** represent the structure of porous media. The figure shows the **computational domain** including **buffers** and the order parameter field (red for phase A, green for the interface center, and blue / transparent for phase B).

^{2} Shell International Exploration & Production Inc.

• The classical incompressible Navier–Stokes model is employed in the one-component single-phase flow simulation module.			
• Basis principle f	for estimating per	rmeability is Darcy	y's law.
Permeab	ility of Pipes – I	Physical Validation	on
Permeability estimations of cylindrical pipes			
radius [m]	theoretical [mD]	estimated [mD]	error
$2.25\mathrm{E}{-4}$	$1.020 \mathrm{E}{+0}$	9.853 E-1	3.40%
$4.00 \mathrm{E}{-4}$	1.019 E+1	1.014 E+1	0.49%
7.00 E-4	$9.554 \text{ E}{+1}$	9.670 E+1	1.21%
1.25 E-3	9.714 E+2 1.020 E + 4	9.535 $E+2$	1.84%
2.23 E = 3 4.00 E = 3	1.020 E+4 1.010 E+5	9.822 E+3 1 01/ E+5	
Permeability estimations of squared pipes			
edge length [m]	theoretical [mD]	estimated [mD]	error
$\frac{0}{100} \text{E}_{-1}$	$0.065 F_{-1}$	$1.036 F \perp 0$	
7.28 E-4	9.905 E-1 1 000 E+1	1.030 E+0 9 499 E+0	5.90%
1.30 E - 3	1.000 E + 1 1.017 E + 2	$9.967 \mathrm{E}{+1}$	2.00%
2.30 E-3	$9.965 \mathrm{E}{+2}$	9.814 E + 2	1.52%
$4.09\mathrm{E}{-3}$	$9.965\mathrm{E}{+3}$	$1.034\mathrm{E}{+4}$	3.76%
$7.28 \mathrm{E-3}$	$1.000 \mathrm{E}{+5}$	$9.475\mathrm{E}{+4}$	5.25%
Permeability estimations of equilateral-triangular pipes			
side length [m]	theoretical [mD]	estimated [mD]	error
$6.53\mathrm{E}{-4}$	$9.972 \mathrm{Emm}{-1}$	$9.954\mathrm{E}{-1}$	0.18%
$1.17 \mathrm{Emm}{-3}$	$1.028\mathrm{E}{+1}$	$1.067\mathrm{E}{+1}$	3.79%
$2.07 \mathrm{Err}{-3}$	$1.007\mathrm{E}{+2}$	$1.015\mathrm{E}{+2}$	0.79%
$3.67 \mathrm{Err}{-3}$	$9.949\mathrm{E}{+2}$	$1.004\mathrm{E}{+3}$	0.91%
$6.53 \mathrm{E}{-3}$	9.972 E+3	9.928 E+3	0.44%
$1.17 \mathrm{E}{-2}$	$1.028\mathrm{E}{+5}$	$1.066 \mathrm{E}{+5}$	3.70%
• Theoretical permeability of a particular pipe is obtained from Darcy's law based analytical formula as standard reference. Berea Sandstone			
 Velocity field (Mesh resolution ber of unknow: Estimated period 	left) and pressure field n: $1/235$. Number of ns per time step: 35 neability of this sam	ld (right) at the stea of elements: 2 931 41 177 028. ple in X-direction: 76	dy state. 9. Num- 61.8 mD.

Upscaling: Permeability Estimation